NÚMEROS IRRACIONALES | CURSO ONLINE DE MATEMÁTICAS


Números irracionales

Un número irracional es un número que no se puede escribir en fracción – el decimal sigue para siempre sin repetirse.

Ejemplo: Pi es un número irracional. El valor de Pi es

3.1415926535897932384626433832795 (y más…)

Los decimales no siguen ningún patrón, y no se puede escribir ninguna fracción que tenga el valor Pi.

Números como 22/7 = 3.1428571428571… se acercan pero no son correctos.

Se llama irracional porque no se puede escribir en forma de razón (o fracción),
¡no porque esté loco!

Racional o irracional

Pero si un número se puede escribir en forma de fracción se le llama número racional:

Ejemplo: 9.5 se puede escribir en forma de fracción así

19/2 = 9.5

así que no es irracional (es un número racional)

Aquí tienes más ejemplos:

Números En fracción ¿Racional o
irracional?
5 5/1 Racional
1.75 7/4 Racional
.001 1/1000 Racional
√2
(raíz cuadrada de 2)
? ¡Irracional!

Ejemplo: ¿La raíz cuadrada de 2 es un número irracional?

Mi calculadora dice que la raíz de 2 es 1.4142135623730950488016887242097, ¡pero eso no es todo! De hecho sigue indefinidamente, sin que los números se repitan.

No se puede escribir una fracción que sea igual a la raíz de 2.

Así que la raíz de 2 es un número irracional

Números irracionales famosos

Pi es un número irracional famoso. Se han calculado más de un millón de cifras decimales y sigue sin repetirse. Los primeros son estos:

3.1415926535897932384626433832795 (y sigue…)

e El número e (el número de Euler) es otro número irracional famoso. Se han calculado muchas cifras decimales de e sin encontrar ningún patrón. Los primeros decimales son:

2.7182818284590452353602874713527 (y sigue…)

phi La razón de oro es un número irracional. Sus primeros dígitos son:

1.61803398874989484820… (y más…)

síbolo radical Muchas raíces cuadradas, cúbicas, etc. también son irracionales. Ejemplos:

√3 1.7320508075688772935274463415059 (etc)
√99 9.9498743710661995473447982100121 (etc)

Pero √4 = 2, y √9 = 3, así que no todas las raíces son irracionales.

Historia de los números irracionales

Aparentemente Hipaso (un estudiante de Pitágoras) descubrió los números irracionales intentando escribir la raíz de 2 en forma de fracción (se cree que usando geometría). Pero en su lugar demostró que no se puede escribir como fracción, así que es irracional.


números racionales ejemplos
números racionales e irracionales
propiedades de los números racionales
números racionales ejercicios
como se representan los números racionales
10 ejemplos de números racionales resueltos
conjunto de los números racionales
tipos de números racionales
NÚMEROS IRRACIONALES | CURSO ONLINE DE MATEMÁTICAS
Next Post

SUMA DE FRACCIONES | CURSO ONLINE DE MATEMÁTICAS

SUMA DE FRACCIONES | CURSO ONLINE DE MATEMÁTICAS

You May Like

Subscribe US Now