Los exponentes también se llaman potencias o índices
El exponente de un número dice cuántas veces se multiplica el número.
En este ejemplo: 82 = 8 × 8 = 64
En palabras: 82 se puede leer “8 a la segunda potencia”,también como, “8 a la potencia 2” o simplemente “8 al cuadrado”
Leyes de los exponentes
Ley
Ejemplo
x1 = x
61 = 6
x0 = 1
70 = 1
x-1 = 1/x
4-1 = 1/4
xmxn = xm+n
x2x3 = x2+3 = x5
xm/xn = xm-n
x4/x2 = x4-2 = x2
(xm)n = xmn
(x2)3 = x2×3 = x6
(xy)n = xnyn
(xy)3 = x3y3
(x/y)n = xn/yn
(x/y)2 = x2 / y2
x-n = 1/xn
x-3 = 1/x3
Explicaciones de las leyes
Las tres primeras leyes (x1 = x, x0 = 1 y x-1 = 1/x), pero son sólo parte de la sucesión natural de exponentes. ejemplo:
Ejemplo: potencias de 5
… etc…
52
1 × 5 × 5
25
51
1 × 5
5
50
1
1
5-1
1 ÷ 5
0.2
5-2
1 ÷ 5 ÷ 5
0.04
… etc…
La ley que dice que xmxn = xm+n
En xmxn, ¿cuántas veces multiplicas “x”? Respuesta: primero “m” veces, despuésotras “n” veces, por lo tanto en total “m+n” veces.
Ejemplo: x2x3 = (xx) × (xxx) = xxxxx = x5
Así que x2x3 = x(2+3) = x5
La ley que dice que xm/xn = xm-n
Como en el ejemplo anterior, ¿cuántas veces multiplicas “x”? Respuesta: “m” veces, después reduce eso “n” veces (porque estás dividiendo), en total “m-n” veces.
Ejemplo: x4-2 = x4/x2 = (xxxx) / (xx) = xx = x2
(Recuerda que x/x = 1, así que cada vez que hay una x “sobre la línea” y una “bajo la línea” puedes cancelarlas.)
Esta ley también te muestra por qué x0=1 :
Ejemplo: x2/x2 = x2-2 = x0 =1
La ley que dice que (xm)n = xmn
Primero multiplicas x “m” veces. Después tienes que hacer eso “n” veces, en total m×n veces.